Search results for "Nervous System Physiology"

showing 5 items of 5 documents

Genetic identification of neurons controlling a sexually dimorphic behaviour

2000

0960-9822 (Print) Journal Article Research Support, Non-U.S. Gov't; In the fruit fly Drosophila melanogaster, locomotor activity is sexually dimorphic: female flies constantly modulate their activity pattern whereas males show a steadier, stereotyped walking pace [1]. Here, we mapped the area of the brain controlling this behavioural dimorphism. Adult male Drosophila expressing a dominant feminising transgene in a small cluster of neurons in the pars intercerebralis exhibited a female-like pattern of locomotor activity. Genetic ablation of these neurons prevented the feminisation of the locomotor activity of transgenic males. The results suggest that this cluster of neurons modulates sex-sp…

MaleMESH: NeuronsCourtshipAnimals Genetically ModifiedSexual Behavior Animal0302 clinical medicineMESH: Saccharomyces cerevisiae ProteinsDrosophila ProteinsNervous System Physiological PhenomenaMESH: AnimalsMESH: Sexual Behavior AnimalDrosophila melanogaster/*physiologymedia_commonNeurons0303 health sciencesFungal proteinSex CharacteristicsbiologyAgricultural and Biological Sciences(all)Nuclear ProteinsAnatomyMESH: Transcription FactorsMotor Activity/*physiologyMESH: Motor ActivityDNA-Binding ProteinsFungal Proteins/geneticsNuclear Proteins/*genetics/physiologyDrosophila melanogasterMESH: Fungal Proteins[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]FemaleDrosophila melanogasterGeneral Agricultural and Biological SciencesLocomotionSex characteristicsMESH: Sex CharacteristicsNervous System PhysiologySaccharomyces cerevisiae ProteinsTransgenemedia_common.quotation_subjectRecombinant Fusion ProteinsRecombinant Fusion Proteins/biosynthesisSexual BehaviorMESH: LocomotionTranscription Factors/geneticsGenetically ModifiedMotor ActivityGeneral Biochemistry Genetics and Molecular BiologyMESH: Drosophila melanogasterFungal ProteinsMESH: Animals Genetically Modified03 medical and health sciencesMESH: Recombinant Fusion ProteinsAnimalsDrosophila030304 developmental biologyBiochemistry Genetics and Molecular Biology(all)Animalfungibiology.organism_classificationMESH: MaleSexual dimorphismMale courtship behaviourMESH: Nervous System PhysiologyNeuroscienceMESH: FemaleMESH: Nuclear ProteinsNeurons/*physiology030217 neurology & neurosurgeryTranscription Factors
researchProduct

Gray Matter NG2 Cells Display Multiple Ca2+-Signaling Pathways and Highly Motile Processes

2011

NG2 cells, the fourth type of glia in the mammalian CNS, receive synaptic input from neurons. The function of this innervation is unknown yet. Postsynaptic changes in intracellular Ca(2+)-concentration ([Ca(2+)](i)) might be a possible consequence. We employed transgenic mice with fluorescently labeled NG2 cells to address this issue. To identify Ca(2+)-signaling pathways we combined patch-clamp recordings, Ca(2+)-imaging, mRNA-transcript analysis and focal pressure-application of various substances to identified NG2-cells in acute hippocampal slices. We show that activation of voltage-gated Ca(2+)-channels, Ca(2+)-permeable AMPA-receptors, and group I metabotropic glutamate-receptors provo…

Central Nervous SystemAnatomy and PhysiologyVesicular glutamate transporter 1Glycobiologylcsh:MedicineHippocampal formationBiochemistryIon ChannelsTransmembrane Transport ProteinsMice0302 clinical medicinePostsynaptic potentialBiomacromolecule-Ligand Interactionslcsh:ScienceCells CulturedMembrane potential0303 health sciencesMultidisciplinarybiologyReverse Transcriptase Polymerase Chain ReactionDepolarizationNeurochemistryNeurotransmittersCell biologyElectrophysiologymedicine.anatomical_structureNeurologyNeurogliaMedicineProteoglycansNeurochemicalsGlutamateNeurogliaResearch ArticleNervous System PhysiologySignal TransductionCell PhysiologyMotilityNeuroimagingMice TransgenicNeurological System03 medical and health sciencesNeuropharmacologymedicineAnimalsHumansddc:610Biology030304 developmental biologyEndoplasmic reticulumlcsh:RProteinsGamma-Aminobutyric AcidTransmembrane ProteinsLuminescent ProteinsMicroscopy Electronnervous systemMicroscopy FluorescenceSynapsesVesicular Glutamate Transport Protein 1biology.proteinNervous System Componentslcsh:QCalciumPhysiological Processes030217 neurology & neurosurgeryNeurosciencePLoS ONE
researchProduct

Aspartoacylase-lacZ knockin mice: an engineered model of Canavan disease.

2011

Canavan Disease (CD) is a recessive leukodystrophy caused by loss of function mutations in the gene encoding aspartoacylase (ASPA), an oligodendrocyte-enriched enzyme that hydrolyses N-acetylaspartate (NAA) to acetate and aspartate. The neurological phenotypes of different rodent models of CD vary considerably. Here we report on a novel targeted aspa mouse mutant expressing the bacterial β-Galactosidase (lacZ) gene under the control of the aspa regulatory elements. X-Gal staining in known ASPA expression domains confirms the integrity of the modified locus in heterozygous aspa lacZ-knockin (aspa(lacZ/+)) mice. In addition, abundant ASPA expression was detected in Schwann cells. Homozygous (…

MaleCentral Nervous SystemCerebellumPathologyAnatomy and PhysiologyCanavan DiseaseMouseMutantlcsh:MedicineNeural HomeostasisBiochemistryMiceNeurobiology of Disease and Regenerationlcsh:ScienceSex CharacteristicsMultidisciplinaryNeuromodulationNeurochemistryGenomicsAnimal ModelsFunctional Genomicsmedicine.anatomical_structureLac OperonNeurologyHomeostatic MechanismsMedicineFemaleNeurochemicalsGenetic EngineeringResearch ArticleNervous System PhysiologyBiotechnologymedicine.medical_specialtyTransgeneCentral nervous systemNeurophysiologyMice TransgenicNeuroimagingBiologyNeurological SystemAmidohydrolasesWhite matterModel OrganismsGeneticsmedicineAnimalsBiologyNeuropeptidesLeukodystrophylcsh:RComputational Biologymedicine.diseaseMolecular biologyCanavan diseaseAspartoacylaseDisease Models AnimalMetabolismnervous systemSmall MoleculesCellular NeuroscienceMetabolic DisordersMutationGenetics of DiseaseNervous System Componentslcsh:QGene FunctionMolecular NeuroscienceAnimal GeneticsNeurosciencePLoS ONE
researchProduct

Single administration of tripeptide α-MSH(11-13) attenuates brain damage by reduced inflammation and apoptosis after experimental traumatic brain inj…

2013

Following traumatic brain injury (TBI) neuroinflammatory processes promote neuronal cell loss. Alpha-melanocyte-stimulating hormone (α-MSH) is a neuropeptide with immunomodulatory properties, which may offer neuroprotection. Due to short half-life and pigmentary side-effects of α-MSH, the C-terminal tripeptide α-MSH(11-13) may be an anti-inflammatory alternative. The present study investigated the mRNA concentrations of the precursor hormone proopiomelanocortin (POMC) and of melanocortin receptors 1 and 4 (MC1R/MC4R) in naive mice and 15 min, 6, 12, 24, and 48 h after controlled cortical impact (CCI). Regulation of POMC and MC4R expression did not change after trauma, while MC1R levels incr…

Central Nervous SystemMaleendocrine systemAnatomy and PhysiologyPro-OpiomelanocortinMouseScienceAnti-Inflammatory AgentsGene ExpressionApoptosisNeurological SystemImmunomodulationMiceModel OrganismsNeurorehabilitation and TraumaAnimalsMelanocyte-Stimulating HormonesBiologyCalcium-Binding ProteinsMicrofilament ProteinsQRBrainAnimal ModelsPeptide FragmentsMice Inbred C57BLHead InjuryNeurologyImmune SystemBrain InjuriesNervous System ComponentsCytokinesReceptor Melanocortin Type 4MedicineClinical ImmunologyMicrogliaInflammation MediatorsReceptor Melanocortin Type 1hormones hormone substitutes and hormone antagonistsResearch ArticleNervous System PhysiologyPLoS ONE
researchProduct

Evaluation of a murine single-blood-injection SAH model.

2014

The molecular pathways underlying the pathogenesis after subarachnoid haemorrhage (SAH) are poorly understood and continue to be a matter of debate. A valid murine SAH injection model is not yet available but would be the prerequisite for further transgenic studies assessing the mechanisms following SAH. Using the murine single injection model, we examined the effects of SAH on regional cerebral blood flow (rCBF) in the somatosensory (S1) and cerebellar cortex, neuro-behavioural and morphological integrity and changes in quantitative electrocorticographic and electrocardiographic parameters. Micro CT imaging verified successful blood delivery into the cisterna magna. An acute impairment of …

medicine.medical_specialtyCerebellumPathologySubarachnoid hemorrhagePhysiologyCerebral arteriesNeurophysiologylcsh:MedicineCisterna magnaSomatosensory systemInternal medicinemedicineMedicine and Health Sciencescardiovascular diseaseslcsh:ScienceElectrocorticographyBrain MappingBrain DiseasesCerebral IschemiaMultidisciplinarymedicine.diagnostic_testbusiness.industryNeurotransmissionlcsh:RBiology and Life SciencesElectroencephalographymedicine.diseasenervous system diseasesmedicine.anatomical_structureCerebral blood flowBrain ElectrophysiologyNeurologyCerebellar cortexCardiologylcsh:QbusinessResearch ArticleNeuroscienceNervous System PhysiologyPLoS ONE
researchProduct